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Equilibrium State of a Classical 
Fluid of Hard Rods in an External Field 
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Received July 12, 1976 

The external field required to produce a given density pattern is obtained 
explicitly for a classical fluid of hard rods. All direct correlation functions 
are shown to be of finite range in all pairs of variables. The one-sided 
factors of the pair direct correlation are also found to be of finite range. 
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1. INTRODUCTION 

The study of the structure of  nonuniform fluids is becoming an area of well- 
merited increasing activity (see, e.g., Ref. 1). One of the problems confronting 
attempts at effective approximation methods is the paucity of exactly solvable 
model systems which might serve as guides. One can say, largely after the 
event, that much of the progress made in classical uniform fluid structure has 
arisen from concepts which are most clearly presented in the context of  a 
fluid of  one-dimensional hard cores. In this paper we shall solve, essentially 
completely, the classical equilibrium statistical mechanics of  a hard-rod 
fluid in an arbitrary external field. Our major conclusion will be that the 
short-range properties of the pair direct correlation function and its derived 
functions, which are crucial to analysis of  the uniform fluid, remain valid in 
the presence of an external field. This suggests that approximations based 
upon these properties in realistic uniform fluids will remain suitable in the 
presence of nonuniformity. 
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2. BASIC  S O L U T I O N  

We consider a system of hard rods--one-dimensional hard cores--of 
diameter a in an external potential u(x) at reciprocal temperature fl and 
fugacity z. Classical equilibrium statistical mechanics is then determined by 
the grand partition function, which may be written assuming that the integrals 
converge, 

E = E z~" "'" exp -/3 u(x~) dx~ ... dxl  (1) 
0 

X l  + a < - x  2 
.. .  

X N - - I  + a < X  N 

The various distribution functions arise from fixing appropriate integration 
variables, and so let us generalize (1) to the definition 

E(x,y)  = ~ f f e x p [ - / 3 ~ u ( x , )  I t  dxu ... dxz 
x + a < ~ x  1 

X N + a < - - y  

for x + a < ~ y  (2) 

E(x,y)  = 0  for x +  a > y  

Of course, then, E = E ( -  0% oo). 
It is simplest to generate the system distribution functions by functional 

differentiation (see, e.g., Ref. 2). We have 

t,(x) = S(ln z)/s -/3u(x) 
= ze-  ~'(x)E(- ~ ,  x)Z~(x, oo)/E (3) 

p2(x, y )  = e -Bu(y> 3p(x)e~U(x)]3 - flu(y) 

= z2e- e~(~)e- a~(~)E( - ~), x)E(x, y)E(y, oo)/E, for x ~< y (4) 

To evaluate these, we must find E(x, y).  But directly from the definition (2), 

(S/Sx)E(x, y )  = --ze-B~'(x+~)E(x + a, y )  -- 3(x + a -- y) 
(5) 

(8/Sy)E(x,  y )  = ze-~'(u-~)E(x, y - a) + 3(x + a - y) 

which may be solved explicitly in special cases. A change of viewpoint is, 
however, helpful. To emphasize that the problem lies in the nonuniformity of 
the system, we will express all distributions in terms of p(x) rather than of 
u(x). Thus we must first solve for u in terms of p. 

Reduced to the quantities entering into p(x), (5) tells us that 

(8/~x)Z_(x, oo) = -ze-~ ' (~+o)r~(x  + a, co) 
(6) 

(~ /~x )E( -  ~ ,  x) = ze ~'(~-'~)E(- ~ ,  x - a) 
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and hence 

(O/Ox)Z(x, ~ )  = - E p ( x  + a ) / E ( - c o ,  x + a) 
(7) 

( 8 / 0 x ) E ( - ~ ,  x) = Ep(x - a)/E(x - a, ~ )  

It  follows that  (S/8x)[E(x - a, ~ ) = ( _  ~ ,  x)] = E(e(x - a) - p(x)), or 

( S )  E(x - a, r e ) E ( - ~ ,  x) = C - p(z) dz E (8) 
x - - a  

for  a suitable constant  C. Assume that  p(x) --~ 0 as x -~  _+ m. Then, letting 
x - - ~ o v i n ( 8 ) , l . E =  E . C o r C =  1. N o w  

(O/~x)E(x, ~ )  = - p ( x  + a)E(x, ov 1 - p(w) dw 
X 

so that,  using the boundary  condit ion as x -+  ~ ,  

f~ p(z + a) 
E ( x , ~ )  = e x p +  x 1 - f~+~p(w) dwdZ (9) 

Similarly 

and of  course 

f j  p(z - a) dz (10) E ( - ~ ,  x) = exp ~ 1 - f~_ ~ p(w) dw 

a) 
E = exp P~;;--~--:- dz (1 l) 

Inserting (9)-(11), we therefore have f rom (3) the desired u-p relation 

f 
,_[I - p? - a) dw - I  - p(z +_p(w)a) dwJ ] 

(12) 

The r ight-hand side o f  (12) is readily t ransformed to 

f [  ] [L  l x p(z) _ p(z + a) dz + In t - dw 
- ~  p ( w )  d w  - 1 - f:_~ p(w) dw 1 - f:+~ p ( w )  

thereby yielding the local fo rm 

flu(x) + In O(x) - In z = In 1 - p(w) dw 
x - a  

_ f : + ~  p(z) d z  (13) 
1 - j:_~ p ( w )  dw Jx  



508 J.K. Percus 

3. D I S T R I B U T I O N  F U N C T I O N S  

The modifications of the bulk properties of the core system due to an 
imposed field are now quite easy to assess. Let us look first at the pair dis- 
tribution, or, for somewhat easier interpretation, the conditional density at y 
due to a particle known to be at x < y. We have from (3) and (4) 

p(y[x)  = p2(x, y ) /p (x )  = E(x, y)ze-~"(Y)E(y,  oo)/E(x, ~ )  (14) 

Inserting (2) and (9), this may be written as 

p(ylx) = ~ TU(x, y) (lSa) 
1 

where 

T(x ,  y )  =- e(y  - x - a)z exp - t iu(y)  + 1 - f2 § p(w) dw 

(15b) 
e(x) = 1 for x ~ > 0  

---0 for x < 0  

Equation (15) is in fact a decomposition of  the conditional density into 
layers, familiar from the uniform fluid case (see, e.g., Ref. 3). The Nth term 
contributes when the particle at y is the Nth neighbor of that at x. The chain 
of N particles is a Markov chain with transition matrix T(x ,  y ) ,  which contains 
the core exclusion, the expected Boltzmann factor due to the external u, as 
well as a Boltzmann factor due to the pressure field to the right of y. The 
effective pressure is clearly given by 

t i P ( y )  = (d /dy )  p(z + a ) d z  1 - z p(w) dw 

o r  

I  16, 
This will be recognized as the hard-core equation of state in which the 
numerator or transport part uses the contact density at the interface of a 
particle at y with the fluid to the right, w]file the denominator uses the mean 
density between particle and interface. 

From the viewpoint of analytic simplicity, it is far easier and equally 
significant to obtain the sequence of inverse or so-called direct correlation 
functions. These may be defined by (2~ 

cs(xl ..... xs) = 8p(x2) ... 3p(x~) [tiu(xl) + In p(x~)] (17) 
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In particular, for the basic pair direct correlation c2(x, y ) ,  we have at once 
from (13) 

c 2 ( x , y )  = - e ( x  - y ) e ( y  - x + a) _ E(y - x ) e ( x  - y + a) 

1 - f~x-~ p (w)  dr*, 1 - f~_~ O(w) dw 

( p(z)e(z  -- x ) , ( x  + a - z )e(z  -- y ) e ( y  + a - z)  
[1 - - ~ - - - - -  ~ d z  

J - L o 

perhaps more transparent in the form 

- 1  
C2(X, Y)  

1 - ~_~ p(w)  d w  

08) 

fx+o o(z) dz 
.u [1 - f 2 - =  O(W) a w l  2 (19)  

when x ~< y ~< x + a. The important thing to notice about (18) is that c2 has 
precisely the range of the hard core: c2(x, y) = 0 unless Ix - y[ ~ a. The 
Ornstein-Zernicke, (~) Percus-Yevick, (5) hard-core insertion, C6> or generalized 
mean spherical modeF 7) approximation that c2 vanishes outside the range of 
interaction holds exactly for rods in an external field. 

The full sequence of c~ is no harder to obtain. Repeatedly using 

,s 8 ~ x )  O(w) dw = e (y  - x ) e ( x  - y + a) (20) 
- - a  

we find at once from (17) 

c,(xl ..... xs) _ ~ FL~• [,(x~ -xj),(x_____j- x, + a)] 
(s - 2)! ,=1/-" [1 - f2i-= p(w) dw] ~-1 

- ( s -  l ) f  P(Z) i--I~i; [e__(z-- xj)e____~(x__j-- z + a)] dz  (21) 
- f2_o dw] 

and conclude that in fact c~ is of range a in each pair of  coordinates. Another 
consequence of (21) is that cs is negative at every point in s-space on its non- 
vanishing domain. 

4. F U R T H E R  P R O P E R T I E S  OF THE PAIR D I R E C T  
C O R R E L A T I O N  

The original Ornstein-Zernike definition (4) of the pair direct correlation, 
equivalent to (17), is that, matrixwise, 

C = S -1 (22) 

where 

C ( x ,  y)  = 3(x - y ) / p ( y )  - c2(x, y )  (23) 
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and S(x, y) is the modified pair Ursell function 

S ( x , y )  = ([p(x) - O(x)][~(y) - P(Y)]) 

= p(x) 8(x - y)  + F(x, y)  

= p(x) 3(x - y) + O2(x, y)  - P(x)p(Y) (24) 

Here t~(x) is the instantaneous microscopic density ~'i 3 ( x -  x0. Clearly 
S(x, y)  is positive definite, so that (if S is bounded) C(x, y) is positive definite 
as well. It is then always possible to write 2 

C = ( I -  00)0-i(1- oO+) (25) 

for suitable Q, where p(x, y ) -  p ( x ) ~ ( x -  y). We shall investigate the 
properties of the matrix Q. 

Of course Q is not determined uniquely by (25). It becomes so to within 
a diagonal multiplier if we impose the condition Q(x, y) # 0 only for x >/y, 
so that Q+(x, y)  # 0 only for x ~< y. For a uniform hard-rod system, it is 
known (a~ that Q, so restricted, is of range a as well. Let us assume that here, 
too, we have 

Q + ( x , y ) # O  only for x ~ < y ~ < x + a  
(26) 

Q(x ,y )  vaO only for x - a ~ < y  <~x 

certainly implying that c2 is of range a. We will now verify this supposition, 
determine Q, and incidentally quickly rederive the result (18). 

According to (22), (24), and (25), I = (I - Q p ) p - I ( I _  pQ+)(p + F). 
Hence (I - pQ+)(p + F) = p(I - Qp)-I, or 

F -  pa+p - pQ+F = p a p ( I -  ap)-~ (27) 

and explicitly 

y) - p(x)o(y)Q+(x, y) - p(x) f Q+(x, z)F(z, y) dz F(x, 

= p(x) ~ (Qp)S(x, y)  (28) 
1 

The information we have available is that, while Q and Q + are short range, 
p2(x, y) has no short-range part:  p2(x, y)  = 0 for Ix - Yl ~< a, or 

V(x , y )  = -p(x )p(y)  for Ix - Yl ~< a (29) 

Now consider (28) in the domain x ~< y ~< x + a; there it reduces to 

-p(x )o(y)  -- o(x)p(y)Q+(x, y) - p(x)o(y) Q+(x, z)p(z) dz = 0 

2 For uniform systems, see Ref. 8. 
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or to 

f 
X ' t -  a 

Q+(x, y )  = - 1 - Q+(x, z)p(z) dz for  
~ x  

The solution of  (30) is s t raightforward.  We have 

f 7  ~ +~ ] Q+(x, y ) p ( y )  dy = - p(y)  1 + Q+(x, z)p(z) dz 
)r X X 

Solving for f~+a Q + ( x , y ) p ( y ) d y  and inserting in (30) in the 

x ~< y ~< x + a, it follows that  

/ [ i  2+. ] Q+(x, y )  = - ~ ( y  - x)e(x - y + a) 1 - p(z) dz 
x 

whence 

x <~ y <~ x + a (30) 

region 

(31) 

/[ fj'+~ t Q ( x , y )  = - ~ ( x -  y ) e ( y -  x + a) 1 - p(z) dz (32) 

N o w  if (31) and (32) are substi tuted into (25) in the fo rm [see (23)] 

c2 = O + Q+ - QpQ+ (33) 

(18) is precisely reproduced.  Thus  the assumpt ion  (26) is validated,  and yet 
ano ther  aspect  o f  bulk  system distr ibutions is mainta ined in the face of  
nonuniformity .  
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